شاخص کارایی مصرف عناصر غذایی ذرت در واکنش به اثر متقابل مصرف آب و کودهای نیتروژن و فسفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه زراعت دانشکده کشاورزی دانشگاه فردوسی مشهد

3 دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

به منظور درک اثر متقابل آب، نیتروژن و فسفر بر عملکرد و کارایی مصرف عناصر غذایی ذرت آزمایشی به صورت کرت‌های خرد شده در دوسال 1393 و 1394 در قالب طرح بلوک‌های کامل تصادفی در مزرعه تحقیقاتی دانشگاه فردوسی مشهد به اجرا در آمد. آبیاری در سه سطح 80 (ETc80)، 100 (ETc100) و 120 (ETc120) درصد نیاز آبی گیاه به عنوان کرت اصلی و ترکیب فاکتوریل سه سطح صفر (N0)، 200 (N200) و 400 (N400) کیلوگرم نیتروژن در هکتار با صفر (P0)، 100 (P100) و 200 (P200) کیلوگرم فسفر در هکتار در کرت‌های فرعی در نظر گرفته شدند. نتایج نشان داد که با افزایش هر یک از نهاده‌ها عملکرد دانه ذرت بهبود یافت. روند تاثیر هر یک از این نهاده‌ها بر عملکرد دانه به این ترتیب N > ETc > P بود. اثر متقابل مصرف آب و نیتروژن نشان داد که عملکرد و کارایی مصرف نیتروژن و فسفر در سطح N0 با افزایشETc نسبتا خطی افزایش یافت، اما این صفات در تیمارهای N200 و N400 با افزایش آبیاری بیش از ETc100 به ترتیب بدون تغییر و روند کاهشی نشان دادند. بنابراین، ETc100N200 بهینه‌ترین تیمار در افزایش عملکرد و کارایی مصرف نیتروژن به طور همزمان بود. اثر متقابل نیتروژن و فسفر بر عملکرد و جذب عناصر غذایی مثبت و به صورت هم‌افزایی بود. نتایج آنالیز مسیر مشخص نمود که در اغلب تیمارهای آزمایش تاثیر کارایی جذب نیتروژن و فسفر در مقایسه با کارایی تبدیل آنها بر کارایی مصرف هر یک از این عناصر غذایی بارزتر بود.

کلیدواژه‌ها


llen, R., Pereira, L., Dirk, R., Smith., M., 1998. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Food and Agriculture Organization of the United Nations.
Bai, H., and Tao, F. 2017. Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China. Field Crops Research, 211, 89-105. https://doi.org/10.1016/j.fcr.2017.06.010
Bayuelo-Jiménez, J.S., and Ochoa-Cadavid, I. 2014. Phosphorus acquisition and internal utilization efficiency among maize landraces from the central Mexican highlands. Field Crops Research, 156, 123–134. doi: https://doi.org/10.1016/j.fcr.2013.11.005
Cameira, M.R., Fernando, R.M., and Pereira, L.S. 2003. Monitoring water and NO3-N in irrigated maize fields in the Sorraia watershed, Portugal. Agricultural Water Management, 60, 199–216. doi: https://doi.org/10.1016/S0378-3774(02)00175-0
Cao, H.-X., Zhang, Z.-B., Xu, P., Chu, L.-Y., Shao, H.-B., Lu, Z.-H., and Liu, J.-H. 2007. Mutual physiological genetic mechanism of plant high water use efficiency and nutrition use efficiency. Colloids and Surfaces B: Biointerfaces, 57: 1-7. doi: https://doi.org/10.1016/j.colsurfb.2006.11.036
Clarke, J.M., Campbell, C.A., Cutforth, H.W., Dppauw, R.M. and Winkleman, G.E. 1990. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Canadian Journal of Plant Science, 70, 965-977. doi: https://doi.org/10.4141/cjps90-119
Coblentz, W.K., Turner, J.E., Scarbrough, D.A., Humphry, J.B., Coffey, K.P., Daniels, M.B., Gunsaulis, J.L., Teague, K.A., Speight, J.D., and Moore, P.A. 2004. Effects of Nitrogen Fertilization on Phosphorus Uptake in Bermudagrass Forage Grown on High Soil-Test Phosphorus Sites. The Professional Animal Scientist, 20, 146-154. doi: https://doi.org/10.15232/S1080-7446(15)31289-4
Cortina, J., Vilagrosa, A., and Trubat, R. 2013. The role of nutrients for improving seedling quality in drylands. New Forests. 44, 719-732. doi:https://doi.org/10.1007/s11056-013-9379-3
Dalal, R.C., Strong, W.M., Cooper, J.E., and King, A.J. 2013. Relationship between water use and nitrogen use efficiency discerned by 13C discrimination and 15N isotope ratio in bread wheat grown under no-till. Soil & Tillage Research, 128, 110–118. doi: https://doi.org/10.1016/j.still.2012.07.019
Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T., and Stanca, A.M. 1998. Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. European Journal of Agronomy, 9, 11–20. doi: https://doi.org/10.1016/S1161-0301(98)00019-7
Dhugga, K.S., and Waines, J.G. 1989. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Science, 29, 1232–1239. doi: 10.2135/cropsci1989.0011183X002900050029x
Di Paolo, E., and Rinaldi, M. 2008. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Researchearch, 105, 202–210. doi: https://doi.org/10.1016/j.fcr.2007.10.004
Dordas, C.A. 2011. Nitrogen nutrition index and its relationship to N use efficiency in linseed. European Journal of Agronomy, 34, 124-132. doi: https://doi.org/10.1016/j.eja.2010.11.005
Engels, C., and Marschner, H. 1995: Plant uptake and utilization of nitrogen. In. P.E. Bacon (Eds). Nitrogen Fertilization in the Environment. Marcel Dekker Inc., New York. P. 41-81.
Fageria, N.K. 2014. Yield and yield components and phosphorus use efficiency of
lowland rice genotypes. Journal of Plant Nutrition, 37, 979–989. doi; https://doi.org/10.1080/01904167.2014.888735
Gemenet, D.C., Tom Hash, C., Sanogo, M.D., Sy, O., Zangre, R.G., Leiser, W.L., and Haussmann, B.I.G. 2015. Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Research, 171, 54–66. doi: https://doi.org/10.1016/j.fcr.2014.11.001
Gheysari, M., Mirlatifi, S.M., Homaee, M., Asadi, M.E., and Hoogenboom, G. 2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agricultural Water Management. 96, 946-954. doi: https://doi.org/10.1016/j.agwat.2009.01.005
Goh, K.M., and Haynes, R.J. 1986. Nitrogen and agronomic practices. In. R.J. Haynes (Eds.). Mineral Nitrogen in the Plant-Soil System. Academic Press, London. p. 379–468.
Gonzalez-Dugo, V., Durand, J.L., and Gastal, F. 2010. Water deficit and nitrogen nutrition of crops: a review. Agronomy for Sustainable Development, 30, 529–544. doi: http://dx.doi.org/10.1051/agro/2009059
Graciano, C., Goya, J.F., Frangi, J.L., and Guiamet, J.J. 2006. Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis. Forest Ecology and Management, 236, 202-210. doi: https://doi.org/10.1016/j.foreco.2006.09.005
He, Y.Q., Zhu, Y.G., Smith, S.E., and Smith, F.A. 2002. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture. Journal of Plant Nutrition, 25, 913–925. doi: https://doi.org/10.1081/PLN-120002969
Hu, Y.C., and Schmidhalter, U. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant and Nutrition and Soil Science, 168, 541-549. doi: 10.1002/jpln.200420516
James, J.J., Tiller, R.L., and Richards, J.H. 2005. Multiple resources limit plant growth and function in a salineealkaline desert community. Journal of Ecology, 93, 113-126. doi: 10.1111/j.0022-0477.2004.00948.x
Jones, C.A., Jacobsen, J.S., and Wraithl, J.M. 2005. Response of malt barley to phosphorus fertilization under drought conditions. Journal of Plant Nutrition, 28, 1605-1617. doi: 10.1080/01904160500203531
Koocheki, A., Nassiri Mahallati, M., Moradi, R., and Mansoori, H. 2014. Optimizing water, nitrogen and crop density in canola cultivation using response surface methodology and central composite design. Soil Science and Plant Nutrition, 60, 286–298. doi: https://doi.org/10.1080/00380768.2014.893535
Ladha, J.K., Pathak, H., Krupnik, T.J., Six, J., and van Kessel, C. 2005. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87, 85–156. doi: https://doi.org/10.1016/S0065-2113(05)87003-8
Latiri-Souki, K., Nortcliff, S., and Lawlor, D.W. 1998. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. European Journal of Agronomy, 9, 21–34. doi: https://doi.org/10.1016/S1161-0301(98)00022-7
Le Gouis, J., Beghin, D., Heumez, E., and Pluchard, P. 2000. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. European Journal of Agronomy, 12, 163–173. doi: https://doi.org/10.1016/S1161-0301(00)00045-9
Leiser, W.L., Rattunde, H.F., Weltzien, E., and Haussmann, B.G. 2014. Phosphorus uptake and use efficiency of diverse West and Central African sorghum genotypes under field conditions in Mali. Plant and Soil, 377, 383–394. doi: https://doi.org/10.1007/s11104-013-1978-4
Loick, N., Dixon, E.R., Abalos, D., Vallejo, A., Matthews, G.P., McGeough, K.L., Well, R., Watson, C.J., Laughlin, R.J., and Cardenas, L.M. 2016. Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biology and Biochemistry, 95, 1–7. doi: https://doi.org/10.1016/j.soilbio.2015.12.009
López-Bellido, L., López-Bellido, R.J., and Redondo, R. 2005. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Research, 94, 86-97. doi: https://doi.org/10.1016/j.fcr.2004.11.004
López-Bellido, R.J., and López-Bellido., L. 2001. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and N fertilization. Field Crops Research, 71, 31-46. doi: https://doi.org/10.1016/S0378-4290(01)00146-0
Ma, B.L., Dwyer, L.M., and Gregorich, E.G. 1999. Soil nitrogen amendment effect
on seasonal nitrogen mineralization and nitrogen cycling in maize production. Agronomy Journal, 91, 650–656. doi:10.2134/agronj1999.9161003x
Maestre, F.T., Valladares, F., and Reynolds, J.F. 2005. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748–757. doi: 10.1111/j.1365-2745.2005.01017.x
Manschadi, A.M., Kaul, H.-P., Vollmann, J., Eitzinger, J., and Wenzel, W. 2014. Reprint of developing phosphorus-efficient crop varieties—an interdisciplinary research framework. Field Crops Research, 165, 49–60. doi: https://doi.org/10.1016/j.fcr.2014.06.027
Manske, G.G.B., Ortiz-Monasterio, J.I., van Ginkel, M., Gonza´lez, R.M., Fischer, R.A., Rajaram, S., and Vlek, P.L.G. 2001. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal of Agronomy, 14, 261–274. doi: https://doi.org/10.1016/S1161-0301(00)00099-X
Maris, S.C., Teira-Esmatges, M.R., Arbones, A., and Rufat, J. 2015. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Science of the Total Environment, 538, 966–978. doi: https://doi.org/10.1016/j.scitotenv.2015.08.040
Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London.
Moll, R.H., Kamprath, E.J., and Jackson, W.A. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 74, 562–564. doi:10.2134/agronj1982.00021962007400030037x
Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., and Foley, J.A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254–257. doi: https://doi.org/10.1038/nature11420
O’Neill, P.M., Shanahan, J.F., Schepers, J.S., and Caldwell, B. 2004. Agronomic responses of corn hybrids from different areas to deficit and adequate level of water and nitrogen. Agronomy Journal, 96, 1660–1667.
Otsus, M., and Zobel, M. 2004. Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland. Oecologia,