اثر مصرف آزوسپریلوم، ازتوباکتر و کمپوست همراه با کود شیمیایی بر عملکرد و جذب عناصر در لوبیای معمولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی، گروه زراعت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 موسسه تحقیقات خاک و آب

چکیده

به منظور ارزیابی اثر سطوح مختلف کود نیتروژن و کمپوست قارچ بر عملکرد، اجزای عملکرد و جذب نیتروژن، فسفر و پتاسیم لوبیا تحت تلقیح با باکتری‌های آزوسپریلوم و ازتوباکتر، آزمایشی به صورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار در منطقه رشت اجرا شد. فاکتورهای آزمایش شامل سطوح مختلف کود نیتروژن (0، 75 و 150 کیلوگرم اوره در هکتار) و تیمارهای غیر شیمیایی (باکتری آزوسپریلوم، باکتری ازتوباکتر، کمپوست قارچ (2 تن در هکتار)، کمپوست قارچ + آزوسپریلوم، کمپوست قارچ + ازتوباکتر و شاهد) بودند. نتایج آزمایش نشان داد که در هر سه سطح کود نیتروژن تیمارهای غیر شیمیایی مقدار کلروفیل برگ، تعداد غلاف در بوته، تعداد دانه در بوته و عملکرد بیولوژیک را به طور معنی‌دار نسبت به شاهد افزایش دادند. همچنین تیمارهای غیرشیمیایی در سطح صفر، 75 و 150 کیلوگرم نیتروژن، عملکرد دانه را به ترتیب 19 تا 63، 10 تا 74 و 5 تا 65 درصد نسبت به شاهد افزایش دادند و بیشترین عملکرد دانه (3067 کیلوگرم در هکتار) از تیمار آزوسپریلوم + کمپوست قارچ در سطح 75 کیلوگرم کود نیتروژن به‌دست آمد. در اغلب تیمارهای غیرشیمیایی، با افزایش مصرف کود نیتروژن، غلظت نیتروژن و فسفر اندام هوایی و دانه و غلظت پتاسیم دانه کاهش یافت، ضمن آن‌که تیمار آزوسپریلوم + کمپوست قارچ نسبت به سایر تیمارها برتری معنی‌دار داشت. بنابراین برای افزایش عملکرد و کیفیت دانه لوبیا کاربرد کمپوست قارچ و 75 کیلوگرم در هکتار اوره تحت تلقیح با باکتری آزوسپریلوم در منطقه رشت توصیه می‌شود.

کلیدواژه‌ها


Abdelhamid, M. T., Horiuchi, T., and Oba, S. 2004. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresource technology, 93(2): 183–189.
Abtahi, S.M., Seyed Sharifi, R., and Qaderi, F. 2014. nfluence of Nitrogen Fertilizer Rates and Seed Inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on Yield, Fertilizer Use Efficiency, Rate and Effective Seed Filling Period of Soybean (Glycine max L.) in Second Cropping. Agricultural Science and Sustainable production, 24 (3), 112–129. (In Persian).
Achakzai, A.K.K., and Bangulzai, M.I. 2006. Effect of various of nitrogen fertilizer on the yield and yield attributes of pea (Pisum sativum L.) cultivars. Pakistan Journal of Botany, 32:2. 331– 340.
Adams, J.D.W., and Frostick, L.E. 2008. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresource Technology, 99: 1097–1102.
Arnon, D.T. 1949. Copper enzymes in isolated chloroplast phenoloxidase in Beta vulgaris. Plant Physiology, 24: 1–15.
Barron, J.E., Pasini, R.J., Davis, D.W., Stuthman, D.D., and Graham, P.H. 2000. Response to selection for seed yield and nitrogen fixation in common bean (Phaseolus vulgaris L.). Field Crop Research, 62: 119–128.
Benizri, E., Baudoin, E., and Guckert, A. 2001. Root colonization by inoculated plant growth–promoting rhizobacteria. Biocon ScL Technology, 11: 557–574.
Bertrand, I., Ehrhardt, F., Alavoine, G., Joulian, C., Issa, O.M., and Valentin, C. 2014. Regulation of carbon and nitrogen exchange rates in biological soil crusts by intrinsic and land use factors in the Sahel area. Soil Biology and Biochemistry, 72: 133–144.
Bonnet, S., Berthelot, H., Turk–Kubo, K., Fawcett, S., Rahav, E., L’Helguen, S., and Berman–Frank, I. 2016. Dynamics of N2 fixation and fate of diazotroph–derived nitrogen in a low–nutrient, low–chlorophyll ecosystem: results from the Vahine mesocosm experiment (New Caledonia). Biogeosciences, 13(9): 2653–2673.
Chauhan, H., and Bagyaraj, D. J. 2015. Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Scientia Horticulturae, 197: 441–446.
Das, I., Pradhan, A.K., and Singh, A.P. 2014. Yield and yield attributing parameters of organically cultivated mungbean as influenced by PGPR and organic manures. Journal of Crop and Weed, 10(1): 172–174.
Dashti, N., Zhang, F., Rynes, H., and Smith, D.L.1998. Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean (Glycine max L.) under short season conditions. Plant and Soil, 200: 205–213.
De Salamone, I.E., Hynes, R.K., and Nelson, L.M. 2001. Cytokinin prpduction by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47: 404–411.
Fernández, L.F., Reyes–Varela, V., Martínez–Suárez, C., Salomón–Hernández, G., Yáñez–Meneses, J., Ceballos–Ramírez, J. M., and Dendooven, L. 2010. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.). Bioresource Technology, 101(1): 396–403.
Fidanza, M.A., Sanford, D.L., Beyer, D.M., and Aurentz, D.J. 2010. Analysis of fresh mushroom compost. Horticutural Technology, 20(2): 449–453.
Frutos, I., Garate, A., and Eymar, E. 2010. Applicability of spent mushroom compost (SMC) as organic amendment for remediation of polluted soils. Acta Horticulturae, 852: 261–268.
Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1): 30–39.
Hervas, A.B., Canosa, I., and Santero, E. 2008. Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. Journal of Bacteriology, 190:416–420.
Hopkins, W.G. 2004. Introduction to plant physiology. John Wiely and Sons. New York, 557p.
Joshi, D., Hooda, K.S., Bhatt, J.C., Mina, B.L., and Gupta, H.S. 2009. Suppressive effects of composts on soil–borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Protection, 28(7): 608–615.
Khan, M.S., Zaidi, E.A. and Oves, M. 2013. Effects of Azotobacter inoculants on the yield and phosphate uptake by wheat under different nitrogen resource. Field Crop reaserch, 28(3): 259–261.
Khattak, A.M., Ahmad, I., Amin, N., and Wahid, A. 2011. Effects of different amended organic media on the growth and development of Vinca rosea ‘victory. Applied Ecology and Environmental Research, 27(2): 203–209.
Khurana, A.L., and Dudeja, S.S. 1997. Biological nitrogen fixation technology for pulses production in India. Indian. Inst. Pulses Reserch. Kanpur. Pp1–18.
Kumar, V., Singh, P., Jorquera, M.A., Sangwan, P., Kumar, P., Verma, A.K., and Sanjeev, A. 2015. Isolation of phytase–producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard and Egyptian clover. World Journal of Microbiology and Biotechnology, 29:1361–1369.
Lavakush, Y.J., Verma, J.P., Jaiswal D.K., and Kumar, A. 2014. Evaluation of PGPR and different concentration of nitrogen level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62: 123–128.
Linn, J.G. and Martin, N.P. 1999. Forage quality tests and interpretation. The College of Agricultural, Food and Environmental Sciences, University of Minnesota Press, USA.
Mahmoud, E., El–Gizawy, E., and Geries, L. 2015. Effect of compost extract, N2–fixing bacteria and nitrogen levels applications on soil properties and onion crop. Archives of Agronomy and Soil Science, 61(2): 185–201.
Özguven, A.I. 1998. The opportunities of using mushroom compost waste in Strawberry growing. Turkish Journal of Agriculture and Forestry, 22: 601–607.
Padilla, F.M., Peña‐Fleitas, M.T., Gallardo, M., and Thompson, R.B. 2015. Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Annals of Applied Biology, 166(2): 271–285.
Porte, D., Gupta, S.B., Singh, A.K., Chowhury, T., Dash, D., and Soni, R. 2017. Evaluation of non–symbiotic nitrogen fixing bacterial influence on rhizobium nodulation behaviour in bacterial consortia. International Journal of Crop Research, 5(4): 1598–1602.
Rendon–Anaya, M., Herrera–Estrella, A., Gepts, P., and Delgado–Salinas, A. 2017. A new species of Phaseolus (Leguminosae, Papilionoideae) sister to Phaseolus vulgaris, the common bean. Phytotaxa, 313(3): 259–266.
Schwartz, A.I., Ortiz, M., Maymon, C., Herbold, N., and Fujishige, F. 2013. Bacillus simplex– A little known PGPR with anti–fungal activity– Alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. Viciae. Agronomy, 3: 595–620.
Seyedi, S.M., and Rezvani Moghaddam, P. 2011. Yield, yield components and nitrogen use efficiency of wheat (Triticum aestivum L.) in mushroom compost, biological fertilizer and urea application. Journal of Agroecology, 3(3): 409–419. (In Persian).
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., and Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2:587.
Sheng, X.F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry, 37(10): 1918–1922.
Singh, G., Biswas, D. R., and Marwaha, T.S. 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays L.) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. Journal of plant nutrition, 33(8): 1236–1251.
Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., and Hu, F. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89: 25–34.
Soobhany, N., Mohee, R., and Garg, V.K. 2017. A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris L.). Environmental Science and Pollution Research, 24(12): 11228–11239.
Supanjani, H.H., Jung, J.S., and Lee, K.D. 2006. Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agronomy, Sustainable and Development, 26: 233–240.
Turner, B.L., Frossard, E., and Baldwin, D.S. 2005. Organic Phosphorus in the Environment. CABI Publishing Series. 412.
Wani, S.P., Rupela, O.P., and Lee, K.K. 1995. Sustainable agriculture in the tropics through biological nitrogen fixation in seed legumes. Plant and Soil, 174: 29–49.
Wu, F., Wan, J. H. C., Wu, S., and Wong, M. 2012. Effects of earthworms and plant growth–promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. Journal of Plant Nutrition and Soil Science, 175(3): 423–433.
Yadegari, M. 2013. Inoculation of bean (Phaseolus vulgaris L.) seeds with Rhizobium phaseoli and plant growth promoting rhizobacteria. Advances in Environmental Biology, 8(2): 419–424.
Yahalom, D., Jukervitch, E., Burdman, S., and Okon, Y. 2004. Root growth respiration and beta–glocosidase activity in barley and common bean inoculated with Azospirillum brasilense.Symbiosis, 26: 367 – 377.
Zaidi, A., Khan, M.S., Saif, S., Rizvi, A., Ahmed, B., and Shahid, M. 2017. Role of nitrogen–fixing plant growth–promoting rhizobacteria in sustainable production of vegetables: Current perspective in microbial strategies for vegetable production. Springer International Publishing. (pp. 49–79).
Živčák, M., Olšovská, K., Slamka, P., Galambošová, J., Rataj, V., Shao, H.B., and Brestič, M. 2014. Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant, Soil and Environment, 60(5): 210–215